
Machine Learning Attacks
Against the Asirra CAPTCHA

Philippe Golle
Palo Alto Research Center
Palo Alto, CA 94304, USA

pgolle@parc.com

ABSTRACT
The Asirra CAPTCHA [7], proposed at ACM CCS 2007,
relies on the problem of distinguishing images of cats and
dogs (a task that humans are very good at). The security
of Asirra is based on the presumed difficulty of classifying
these images automatically.

In this paper, we describe a classifier which is 82.7% ac-
curate in telling apart the images of cats and dogs used in
Asirra. This classifier is a combination of support-vector
machine classifiers trained on color and texture features ex-
tracted from images. Our classifier allows us to solve a
12-image Asirra challenge automatically with probability
10.3%. This probability of success is significantly higher
than the estimate of 0.2% given in [7] for machine vision at-
tacks. Our results suggest caution against deploying Asirra
without safeguards.

We also investigate the impact of our attacks on the partial
credit and token bucket algorithms proposed in [7]. The
partial credit algorithm weakens Asirra considerably and we
recommend against its use. The token bucket algorithm
helps mitigate the impact of our attacks and allows Asirra
to be deployed in a way that maintains an appealing balance
between usability and security. One contribution of our work
is to inform the choice of safeguard parameters in Asirra
deployments.

Categories and Subject Descriptors
K.6.5 [Computing Milieux]: Management of Computing
and Information Systems—Security and Protection

General Terms
Security
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CAPTCHA, reverse Turing test, machine learning, support
vector machine, classifier.
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1. INTRODUCTION
The Asirra CAPTCHA [7], proposed at ACM CCS 2007,

relies on the problem of distinguishing images of cats and
dogs (Asirra stands for “Animal Species Image Recognition
for Restricting Access”). An Asirra challenge consists of 12
images, each of which is of either a cat or a dog. To solve
the CAPTCHA, the user must select all the cat images,
and none of the dog images. This is a task that humans
are very good at. According to [7], Asirra “can be solved
by humans 99.6% of the time in under 30 seconds”. The
usability of Asirra is a significant advantage compared to
CAPTCHAs [9] based on recognizing distorted strings of
letters and numbers.

The security of Asirra is based on the presumed difficulty
of classifying images of cats and dogs automatically. As re-
ported in [7], evidence from the 2006 PASCAL Visual Object
Classes Challenge suggests that cats and dogs are particu-
larly difficult to tell apart algorithmically. A classifier based
on color features, described in [7], is only 56.9% accurate.
The authors of [7] conjecture that “based on a survey of ma-
chine vision literature and vision experts at Microsoft Re-
search, we believe classification accuracy of better than 60%
will be difficult without a significant advance in the state of
the art”. With a 60% accurate classifier, the probability of
solving a 12-image Asirra challenge is only about 0.2%.

In this paper, we describe a classifier which is 82.7% ac-
curate in telling apart the images of cats and dogs used in
Asirra. This classifier allows us to solve a 12-image Asirra
challenge with probability 10.3%. This success probability
is significantly higher than the 0.2% estimate given in [7] for
machine vision attacks. While our success rate may appear
low in absolute terms, it nevertheless poses a serious threat
to Asirra if additional safeguards are not deployed to pre-
vent machine adversaries from requesting, and attempting
to solve (at virtually no cost), too many CAPTCHAs.

Our classifier is a combination of two support-vector ma-
chine [5] (SVM) classifiers trained on color and texture fea-
tures of images. The classifier is entirely automatic, and
requires no manual input other than the one-time labelling
of training images. Using 15,760 color features, and 5,000
texture features per image, our classifier is 82.7% accurate.
The classifier was trained on a commodity PC, using 13,000
labelled images of cats and dogs downloaded from the Asirra
website [1].

We also investigate the impact of our attacks on the partial
credit and token bucket algorithms proposed in [7]. The
partial credit algorithm weakens Asirra considerably and we
recommend against its use. The token bucket algorithm



helps mitigate the impact of our attacks and allows Asirra
to be deployed in a way that maintains an appealing balance
between usability and security. One contribution of our work
is to inform the choice of safeguard parameters in Asirra
deployments.

Beyond this immediate contribution, we also hope that
our paper will contribute to the popularization of machine
learning techniques, for both offensive and defensive pur-
poses, in the security community. Machine learning and
other artificial intelligence techniques have not so far been
widely used in cryptographic attacks. Yet recent work sug-
gests that these techniques are powerful tools for the crypt-
analyst’s arsenal. SAT solvers, for example, have been used
to find collisions in hash functions [13] and defeat authenti-
cation schemes [8]. Object recognition algorithms [14] were
used in very successful breaks of the text-based Gimpy and
EZ-Gimpy CAPTCHAs. The machine learning classifiers
of the type used in this paper, likewise, will hopefully find
broader applications in computer security.

Organization. We describe our SVM classifiers in sec-
tion 2, using color features (section 2.1), texture features
(section 2.2) and both in combination (section 2.3). We
discuss the use of these classifiers in attacking Asirra in sec-
tion 3. Section 3.1 investigates the impact of our attacks
on the partial credit and token bucket algorithms of [7]. We
briefly discuss other counter-measures that may help mit-
igate our attack in section 3.2. Finally, we review related
work in section 4 and conclude in section 5.

2. SUPPORT VECTOR MACHINE CLASSI-
FIERS FOR ASIRRA IMAGES

Asirra relies on a large and growing database of some
3,000,000 images of cats and dogs licensed from the adoption
service Petfinder.com. The images displayed by Asirra are
250-by-250 pixels. In the majority of images, there is either
a single cat or a single dog. Some images contain multiple
cats or multiple dogs. In a very few images, there is no rec-
ognizable animal, or else there is both a cat and a dog (these
images cannot be classified according to the rules of Asirra).

Image collection. We collected 13,000 distinct images
from the Asirra implementation publicly available on the
Asirra website [1]. The website serves Asirra CAPTCHAs
that consist of 12 images selected at random (according
to [6]) from the entire Asirra image database. We wrote
a script to automatically refresh the website and download
the 12 images in the new Asirra CAPTCHA obtained after
each refresh. Over the course of a night, our script refreshed
the website approximately 1,100 times and downloaded just
over 13,000 images. To avoid duplicates, every image was
saved in a file named after a hash of its pixels (we detected
and discarded 6 duplicate images). Other than duplicates,
no images were deleted, filtered or otherwise selected.

The collection of 13,000 images thus obtained is a rep-
resentative, unbiased sample of Asirra images, since “the
Asirra service selects images randomly from [Asirra’s] entire
image database for each challenge” [6]. The Asirra authors
conjecture that “Photos have a wide variety of backgrounds,
angles, poses, lighting, and so forth – factors that make ac-
curate automatic classification difficult” [7]. We have every
reason to believe that our subset of 13,000 images offers a
similar diversity of factors.

Manual classification. The next step was to manually
classify the 13,000 images in our collection into 3 classes:
Cat, Dog and Other. The Cat and Dog classes are self-
explanatory. The Other class was for images which either
contained no recognizable animal, or contained both a cat
and a dog. Manual classification was followed by a manual
verification step, in which 159 misclassified images (1.2% of
the total) were detected and moved to the correct category.
After verification, we obtained 6,403 images of cats (49.3%),
6,466 images of dogs (49.7%) and 131 other images (1.0% of
the total). In the rest of our work, we kept only the images
of cats and dogs and discarded the other images.

Building a classifier. We experimented with different
color and texture features computed from images. These
features are described in the rest of this section. We trained
a support vector machine (SVM) classifier [5] with each set
of features. SVM classifiers were selected for their ability
to extract linear combination of features, their predictive
power, and their computational scalability. We refer the
reader to [10] for an excellent introduction to SVM (chapter
12), and a comparison of the characteristics of SVMs and
other learning methods (page 313). In short, a SVM is a su-
pervised learning method which constructs an optimal linear
boundary (or separating hyperplane) between two classes.
This hyperplane is optimal in the sense that it maximizes the
distance, or margins, between the hyperplane and the two
classes on each side of it (an error penalty accounts for mis-
classified points, when the two classes are not perfectly lin-
early separable). The power of SVM classifiers comes from
the fact that the linear boundary is not computed directly in
feature space, but in a transformed, higher-dimensional ver-
sion of the feature space. The transformation is represented,
loosely speaking, by a kernel function. Linear boundaries in
the transformed space produce non-linear boundaries when
mapped back to the original feature space.

Measuring accuracy. We measured the accuracy of our
SVM classifiers using 5-fold cross-validation on random sub-
sets of our image collection. Cross-validation operates by
dividing a subset of images into 5 randomly chosen parti-
tions; 4 of these partitions are used for training while the
remaining one is used for validation. We report results us-
ing subsets of various sizes (5,000 and 10,000 images), to
show the influence of the size of the training sample on the
accuracy of our classifier. The accuracy reported for our
classifiers in the following sections is the average accuracy
(and its standard deviation) over the 5 experiments of 5-fold
cross-validation. We note that all our subsets of images, and
all the partitions used for cross-validation were generated at
random to avoid any bias that might affect our results.

SVM implementation. We trained our SVM with a radial
basis kernel. This kernel defines the inner product of two
feature vectors v and v′ as

K(v, v′) = exp (−γ|v − v′|2).

The parameter γ was tuned with 5-fold cross-validation to
approximately achieve the best test error performance. We
found that γ = 10−3 worked well for color features and
γ = 10−1 worked well for texture features. We used the LIB-
SVM [3] Java implementation of SVM. We rewrote parts of



Color features # Images Classifier accuracy
Feature set N Ch Cs Cv # features Total Training set mean stdev

F1 1 10 10 10 1,000 5,000 4,000 67.3 % 1.6
F2 3 10 8 8 5,760 5,000 4,000 74.6 % 1.1
F3 5 10 6 6 9,000 5,000 4,000 74.6 % 0.6
F3 5 10 6 6 9,000 10,000 8,000 75.7 % 0.7

Table 1: Accuracy of SVM classifiers trained on color features extracted from Asirra images. The color
features are described in section 2.1. The accuracy of the classifier is the fraction of cat and dog images
classified correctly in the test set.

Color features # Images Classifier accuracy
Feature set # features Total Training set mean stdev
F1 ∪ F2 ∪ F3 15,760 5,000 4,000 76.3 % 0.9
F1 ∪ F2 ∪ F3 15,760 10,000 8,000 77.1 % 0.6

Table 2: Accuracy of SVM classifiers trained on a combination of color features.

the LIBSVM library to make more economical use of mem-
ory for vectors of boolean features. All computations were
done on a commodity desktop PC running Windows XP
with dual 3.40 GHZ CPUs and 3.00 GB of RAM.

2.1 Color Features
Recall that an Asirra image is 250-by-250 pixels. We di-

vide the image into N vertical and N horizontal strips of
equal width. We thus obtain a division of the image into a
grid of N2 cells. Each cell is a square of width and height
250/N (rounded to the nearest integer).

We also partition the color space. We use the HSV (hue,
saturation, value) model of color, since it is closer to hu-
man perception of color, and thus easier to interpret, than
the RGB (red, green, blue) model. We subdivide the hue
channel of the color spectrum into Ch bands of equal width,
the saturation channel into Cs bands of equal width and
the value channel into Cv bands of equal width. Altogether,
this gives us a partition of the color space into ChCsCv color
regions.

Informally, the feature vector associated with an image
indicates, for every cell in the image and every color re-
gion, whether there is at least one pixel in the cell which
belongs to the color region. Note that these features are
boolean. Unlike color histograms, they do not indicate how
many pixels in a given cell fall within a certain color region,
but only whether one or more pixel in the cell falls in the
color region. Our experiments show that these boolean fea-
tures yield more accurate classifiers than color histograms,
in addition to being more efficient.

More precisely, the feature vector F(N,Ch, Cs, Cv) is a
boolean vector of length N2ChCsCv. The boolean feature
associated with cell (x, y) ∈ [1, . . . , N ]× [1, . . . , N ] and color
region (h, s, v) ∈ [1, . . . , Ch]× [1, . . . , Cs]× [1, . . . , Cv] takes
the value 1 (or true) if there is one or more pixel in cell (x, y)
of a color that belongs to color region (h, s, v). Otherwise,
the feature takes the value 0 (false).

We trained SVM classifiers with these color features, and
measured their accuracy using 5-fold cross-validation, as ex-
plained above. Our results are given in Table 1 for vari-
ous values of the parameters N,Ch, Cs, Cv and for training
sets of various sizes. For example, the feature set F3 =
F(5, 10, 6, 6) consists of 9,000 color features obtained with

a division of images into 25 cells (N = 5) and a division
of the color space into 360 color regions (Ch = 10, Cs = 6
and Cv = 6). With 4,000 training images, an SVM classifier
using the feature set F3 is on average 74.6% accurate (over
the 5 experiments of 5-fold cross-validation). With 8,000
training images, the accuracy of this classifier increases to
75.7 %.

Combining color features computed on cells of various
sizes further improves the accuracy of our classifier. We
experimented with the union of the three feature sets F1 =
F(1, 10, 10, 10), F2 = F(3, 10, 8, 8) and F3 = F(5, 10, 6, 6) of
Table 1. The total number of color features in F1 ∪ F2 ∪ F3

is 15,760. The accuracy of a classifier using these features is
shown in Table 2. With 4,000 training images, the classifier
is 76.3 % accurate. With 8,000 training images, it is 77.1 %
accurate.

Color features and classifier accuracy. We observed
in our experiments that SVM classifiers trained on boolean
color features are more accurate than those trained on color
histograms. This finding runs counter to intuition: boolean
features, which record only the presence or absence in an
image of pixels belonging to a certain region of the color
spectrum, encode strictly less information than color his-
tograms, which also record the number of such pixels. We
advance two hypotheses for why boolean features outper-
form color histograms. The first is that boolean color fea-
tures, unlike color histograms, are scale-independent: they
record the presence or the absence of, say, the green of a
cat’s eye or the pink of a dog’s tongue regardless of the size
of the eye or tongue in the picture. Our second hypothe-
sis is that the distribution of boolean features is much more
regular (only two values are possible) than the distribution
of real-valued color histograms (in which the range of pos-
sible values may cover several orders of magnitude). The
regularity of boolean features facilitates the tuning of SVM
parameters (notably γ), which results in superior accuracy.

Predictive power of individual color features. We
observe that individual boolean color features, in isolation,
fail to distinguish cats from dogs with any accuracy. The
graph in Figure 1 shows the 1,000 boolean color features
in F1 = F(1, 10, 10, 10), plotted according to the fraction
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Figure 1: This graph shows the 1,000 boolean color
features in F1 = F(1, 10, 10, 10), plotted according to
the fraction of cats (horizontal axis) and the fraction
of dogs (vertical axis) for which the feature evaluates
to“True”. Note that features are clustered along the
diagonal.

of cats (horizontal axis) and the fraction of dogs (vertical
axis) for which the feature evaluates to “True”. The features
are clustered along the diagonal, which indicates that the
ability of any given color feature to distinguish between cats
and dogs is very weak. Nevertheless, an SVM classifier can
harness the aggregate power of the color features to produce
more accurate predictions. The success of our classifier does
not come from the careful selection of a few colors with high
predictive values, but rather from the combination of a large
number of weakly predictive features.

2.2 Texture Features
Approaches to texture recognition can be broadly divided

into two categories. The first category takes a statistical
approach to texture computation. Texture is defined via
quantitative measurements of intensity in different regions
of the image (e.g. by convolution with a Gabor filter [11]).
The second category takes a structural approach, and de-
fines texture as a set of texture tiles (also called texels) in
repeated patterns. We experimented with both approaches,
and found that structural measurements of texture produced
more accurate classifiers.

We start with an informal presentation of our structural
approach to texture recognition. We extract small sub-
images (5-by-5 pixels) from training images of cats and dogs.
We call these sub-images texture tiles. Figure 2 shows exam-
ples of texture tiles extracted from Asirra images. We collect
a set T of texture tiles of size t = |T |, such that the distance
between any two tiles in T is above a certain threshold (we
define below our measure of distance between tiles). This
ensures that the tiles in T are sufficiently diverse, and that
there are no duplicate tiles. The feature vector associated
with an image is the vector of distances between the image
and each texture tile in T (we define below our measure of
distance between an image and a tile). Finally, we train an
SVM classifier with these feature vectors. More precisely,
we proceed as follows.

Figure 2: Example of texture tiles (5-by-5 pixels) ex-
tracted from images of cats and dogs. The classifier
of section 2.2 relies on such texture tiles.

Selection of texture tiles. We select random images of
cats and dogs from the set of training images. We divide
each image into vertical and horizontal strips of equal width
(5 pixels). We thus obtain a division of each image into
(250/5)2 = 2500 feature tiles. Each feature tile is a square
of 5-by-5 pixels. Let us denote T0 this initial set of candidate
tiles. We define the distance between two tiles as the average
Euclidian distance between the pixels of the tiles in RGB
color space. From T0, we then compute a subset T of texture
tiles iteratively as follows. Initially, T is empty. We consider
in turn each tile T ∈ T0. If there already exists a tile in
T whose distance to T is below a certain threshold δ, we
discard T . Otherwise, we add the tile T to T . We repeat
this computation for all candidate tiles in T0 until we obtain
a set T of size t. Note that the initial set T0 must be chosen
of sufficiently large size to ensure the existence of a subset
T of size t.

Feature vector. The feature vector associated with an
image is the vector of distances between the image and each
of the t texture tiles in T . The distance between an image A
and a texture tile T ∈ T is defined as follows. For 0 ≤ i, j ≤
(250 − 5), let us denote Ai,j the square sub-image of A, of
width 5 pixels and height 5 pixels, whose top left corner is
the pixel of A in row i and column j. We define the distance
d(Ai,j , T ) between a sub-image Ai,j and a texture tile T as
the maximum of the Euclidean distance between their pixels
in RGB space. The distance between A and T is defined as
d(A, T ) = mini,j d(Ai,j , T ). Distances are normalized to the
range [0, 1].

Results. We trained an SVM classifier with these tex-
ture features, and measured its accuracy using 5-fold cross-
validation. Our results are given in Table 3. The feature set
G1 consists of 1,000 features which record the distance of an
image to 1,000 texture tiles. The texture tiles are selected
such that the distance between any two of them is at least
40.0. With 4,000 training images, an SVM classifier using
the feature set G1 is 74.5 % accurate. We define a feature
set G2 which consists of 5,000 features which record the dis-
tance of an image to 5,000 texture tiles similarly selected.



Texture features # Images Classifier accuracy
Feature set # tiles δ Total Training set mean stdev

G1 1,000 40.0 5,000 4,000 74.5 % 2.0
G2 5,000 40.0 5,000 4,000 78.0 % 1.9
G2 5,000 40.0 10,000 8,000 80.4 % 0.9

Table 3: Accuracy of SVM classifiers trained on texture features extracted from Asirra images. The texture
features are described in section 2.2. The accuracy of the classifier is the fraction of cat and dog images
classified correctly in the test set.

Features # Images Classifier accuracy
Total Training set mean stdev

(F1 ∪ F2 ∪ F3) +G2 5,000 4,000 80.3 % 1.4
(F1 ∪ F2 ∪ F3) +G2 10,000 8,000 82.7 % 0.5

Table 4: Accuracy of the combined outputs of the color classifier of section 2.1 and the texture classifier of
section 2.2. The color classifier is given half the weight of the texture classifier (see section 2.3).
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Figure 3: Probability distribution of the combined
output of the color and texture classifiers of sec-
tion 2.3.

Using this larger feature set and 4,000 training images, the
accuracy of our SVM classifier increases to 78.0%. With
8,000 training images, it is 80.4 % accurate.

2.3 Combination of Color and Texture
Features

The SVM classifiers of sections 2.1 and 2.2 produce for
each image a real-valued estimate of whether the image is
of a cat or of a dog. We mapped the “cat” class to the value
1.0 and the “dog” class to the value −1.0. Thus, an image
which produces a positive output is labelled “cat” and an
image which produces a negative output is labelled “dog”.
The output of different SVM classifiers can be combined
simply by a weighted average of the estimates they produce.
We combined in this way an SVM classifier which uses the
set of color features F1 ∪ F2 ∪ F3 (with weight 1/3) and a
second SVM classifier which uses the set of texture features
G2 (with weight 2/3). The accuracy of this combination is
given in Table 4. With a training set of 8,000 images, we
obtain a classifier which is 82.7 % accurate. The confusion
matrix of this classifier is in Table 5.

Most dog-like Most cat-like

Cats

Dogs

Figure 4: The cats and dogs in our sample that are
most cat-like and most dog-like, according to the
classifier of section 2.3.

Classified as cat Classified as dog
Cats 4,271 729
Dogs 997 4,003

Table 5: Confusion matrix for the combined color
and texture classifier of section 2.3.

Figure 3 shows the probability distribution of the com-
bined outputs of the color and texture SVM classifiers, for
the “cat” and “dog” classes. Figure 4 shows the cats and
dogs in our sample of 13, 000 pets that are most cat-like and
most dog-like, according to the combined classifier.

Accuracy versus completeness. We can achieve lower
error rates if we allow the classifier to assign some images
a “don’t know” label. The quality of this 3-class classifier is
measured by completeness (the fraction of images classified
as either“cat”or“dog”) and accuracy (the fraction of images
in the“cat”and“dog”classes which are accurately classified).
We turn our combined color and texture classifier into a 3-
class classifier as follows. The classifier is parameterized by
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Figure 5: Accuracy versus completeness of the com-
bined color and texture classifier of section 2.3.

a real-valued parameter ε ≥ 0. Images which produce an
output smaller than −ε are labelled “dog”. Images which
produce an output between −ε and ε are labelled “don’t
know”. Finally, images which produce an output larger than
ε are labelled “cat”.

Figure 5 shows a plot of the accuracy versus completeness
of this classifier obtained for different values of the param-
eter ε. The base accuracy of the combined color and tex-
ture classifier, when classifying all images (completeness of
100 %), is 82.7 %. If the classifier can ignore half the images
(completeness of 50 %), its accuracy rises to 94.8 %. For
20 % completeness, accuracy rises to 98.5 %.

3. ATTACKING ASIRRA
In this section, we describe the application of the machine

classifiers of section 2 to attacking Asirra. Recall that an
Asirra challenge consists of 12 images of cats and dogs. To
solve the challenge, one must identify correctly the subset of
cat images.

Generic attack. A classifier with a success probability 0 <
p < 1 of correctly classifying a single Asirra image succeeds
in solving a 12-image Asirra challenge with probability p12.
Our best classifier is 82.74 % accurate, which implies that
we can solve an Asirra challenge completely automatically
with probability 10.3 %. Note that this success probability
is independent of the probability distribution according to
which Asirra challenges are generated.

Leveraging prior information. This success probabil-
ity can be improved, if the attacker has knowledge of the
prior probability distribution of Asirra challenges over the
space {Cat,Dog}12 (whatever that distribution may be).
Let C = {I1, . . . , I12} denote a 12-image Asirra challenge
and let A = {a1, . . . , a12}, where ai ∈ {Cat,Dog} denote an
assignment of the images I1, . . . , I12 to the “cat” and “dog”
classes. According to Bayes’ rule,

Pr[A|C] = Pr[A] Pr[C|A]/Pr[C].

The attacker’s goal is to compute maxA Pr[A|C], or equiv-
alently maxA(Pr[A] Pr[C|A]). The first term, Pr[A] is the
prior probability distribution that we are assuming is known
to the attacker. The second term, Pr[C|A] can be estimated
by the attacker as follows. Let us assume that the attacker
uses a classifier Cl which produces real-valued outputs, as

in section 2.3. Let δcat denote the probability distribution
of the output of Cl over images of cats, and δdog denote the

probability distribution of the output of Cl over images of
dogs. With this classifier, the attacker can estimate

Pr[C|A] =
∏

i | ai=cat

δcat(Cl(Ii))
∏

i | ai=dog

δdog(Cl(Ii)).

Example. The exact rules for creating Asirra challenges are
not specified precisely in [7]. The basic rule, however, seems
to be that the 12 images of an Asirra challenge are drawn
uniformly at random, either from the full Asirra database
of more than 3,000,000 images, or from a subset of images
of pets located in the geographic vicinity of the user. If
this assumption is correct, it implies that each image in an
Asirra challenge is drawn independently at random from the
“cat” class with probability q and from the “dog” class with
probability 1 − q. An attacker can learn the value of the
parameter q by observing Asirra challenges. Our own mea-
surements suggest q ≈ 0.5 since we found approximately
the same number of cats and dogs in our sample of the
Asirra database. As explained above, we can leverage this
information to compute the most likely assignment A for
a given challenge: maxA(Pr[A] Pr[C|A]). In this example,
Pr[A] = qw(1 − q)12−w, where w is the number of cats in
A. Using the combined color and texture classifier of sec-
tion 2.3 to estimate Pr[C|A], we solve an Asirra challenge
with probability 10.4 %. This probability of success is only
barely higher than that of the generic attack (10.3%). The
reason is that, with the classifier of section 2.3, the generic
attack already produces assignments that nearly follow a
binomial distribution of cats and dogs.

Hypothetical example. Consider an hypothetical variant
of Asirra in which every challenge contains exactly 6 images
of cats and 6 images of dogs (this variant is not proposed in
[7]). We now have Pr[A] = 0 if the number of cats and dogs
in A are not equal, and Pr[A] = 1/

(
12
6

)
otherwise. Using

the Bayesian formula above, and the classifier of section 2.3,
we can solve these variant Asirra challenges automatically
with probability 23.8 %. While this variant may be attrac-
tive from a usability point-of-view (users may solve Asirra
challenges faster if they know they must find exactly 6 cats),
our analysis shows that it is insecure and should be avoided.

3.1 Partial Credit Algorithm and
Token Bucket Scheme

Two enhancements to Asirra are proposed in [7]. The
first is a partial credit algorithm designed to improve the
usability of Asirra for human users. The second is a token
bucket scheme designed to harden Asirra against automated
attacks. In this section, we study the impact of these en-
hancements on the classifier of section 2.3.

Partial credit algorithm (PCA). A user who correctly
classifies 11 of the 12 images in an Asirra challenge is con-
sidered to have “nearly” solved the challenge. The user is
placed in an intermediate state and presented with a sec-
ond challenge. If the user solves or nearly solves the second
challenge (i.e. identifies 11 or 12 images correctly), the user
passes. Otherwise, the user fails and is returned to the de-
fault (non intermediate) state. Table 6 shows the impact of



# trials Classifier success Human success
no PCA PCA no PCA PCA

1 10.3 % 10.3 % 83.4 % 83.4 %
2 19.5 % 26.2 % 97.2 % 99.6 %
3 27.8 % 38.0 % 99.5 % 99.9 %

Table 6: Impact of the partial credit algorithm on
the success of the classifier of section 2.3. For com-
parison, the table also includes the human success
rates reported in [7].

Enhancement TB-refill Classifier
success rate

Token bucket 3 2.9 %
Token bucket 2 2.0 %
Token bucket 1 1.1 %
Token bucket + PCA 3 19.0 %
Token bucket + PCA 2 15.3 %
Token bucket + PCA 1 13.0 %

Table 7: Impact of the token bucket scheme on the
success of the classifier of section 2.3. In [7], the
parameter TB-refill is set to 3.

the partial credit algorithm on the success of the classifier
of section 2.3 (for comparison, the table also includes the
figures for the human success rate, taken from [7]). With
PCA, the success rate of our automatic classifier is 38.0 %
after 3 challenges. This is unacceptably high, and leads us
to recommend that the partial credit algorithm should not
be deployed with Asirra.

Token bucket scheme. A full description of the token
bucket scheme can be found in [7]. In essence, the token
bucket scheme punishes users who fail a lot of Asirra chal-
lenges. These users must solve correctly two Asirra chal-
lenges in close succession to be considered successful. The
token bucket scheme is parameterized by a parameter TB-
refill, which specifies how many chances the user is given to
correctly solve a second CAPTCHA after solving the first
one. A value TB-refill = 1 means that a user who has failed
“too many” Asirra challenges must then solve two successive
CAPTCHAs correctly to be considered successful. In [7],
the value TB-refill=3 is suggested, which means the user is
allowed 3 trials to solve a second CAPTCHA correctly. Ta-
ble 7 shows the impact of the token bucket scheme on the
success of the classifier of section 2.3. Our results suggest
that PCA leads to weak security, even in combination with
the token bucket scheme. On the other hand, Asirra appears
reasonably secure with the parameter TB-refill=1, since our
attack in that case is only 1.1% successful (of course, this
parameter is bound to also significantly decrease the hu-
man success rate, and thus negatively impact the usability
of Asirra).

3.2 Defenses
The best defenses against our machine learning attacks

are IP monitoring schemes, which prevent an adversary from
requesting, and attempting to solve, too many Asirra chal-
lenges. The token bucket scheme proposed in [7], and sum-
marized above in section 3.1, is a clever instantiation of an

IP monitoring scheme. The strictest version of the token
bucket scheme reduces the probability of solving an Asirra
challenge automatically to 1.1% (with, however, a parallel
reduction in the usability of Asirra for humans). The token
bucket scheme could be further strengthened by requiring
users to correctly solve more than two Asirra challenges in
a row. Unfortunately, this would also negatively affect the
ability of humans to pass Asirra challenges. Another ap-
proach to improving the security of Asirra is to increase the
number of images used in challenges.

Distorting, warping or degrading the quality of the im-
ages is unlikely to do much to lower the accuracy of SVM
classifiers based on color and texture features, since these
features are largely unaffected by global image distortions.
Using greyscale images, instead of color images, may de-
crease the accuracy of the color classifiers of section 2.1, but
would likely have little effect on the texture classifiers of sec-
tion 2.2. These techniques do not appear promising: they
are unlikely to dent the effectiveness of automatic classifiers
without also significantly reducing the usability advantage
that is Asirra’s greatest strength. They would amount to
“the arms race found in text CAPTCHAs that [Asirra is]
trying to avoid” [7].

4. RELATED WORK
A number of attacks have been reported against text-

based CAPTCHAs. Mori and Malik [14] proposed object
recognition algorithms that succeeded in recognizing words
in the EZ-Gimpy CAPTCHA with probability 92% and in
the Gimpy CAPTCHA with probability 33%. More recently,
attacks have been reported in the popular press against the
CAPTCHAs used by Yahoo! [15] and Google [16]. Unfor-
tunately, few details are available and it is difficult to as-
certain the validity of these attacks. Very recent work [17]
gives a detailed description of character segmentation at-
tacks against Microsoft and Yahoo! CAPTCHAs.

Beyond Asirra, there have been other proposals for user-
friendly, clickable CAPTCHAs. For example, Lopresti [12]
proposes asking users to select the right orientation of a page
through a click. BotBarrier [2] asks users to click on a spec-
ified location in an image. The security of these proposals
relies on new and relatively untested assumptions. It is not
clear whether these assumptions will withstand the test of
time.

Another approach to clickable CAPTCHAs was recently
proposed by Chow et al. [4]. The approach consists of com-
bining several textual CAPTCHAs into a grid of clickable
CAPTCHAs (e.g. a 3-by-4 grid). The solution to the grid is
the determination (e.g. by clicking) of the grid elements
which satisfy some given requirement. For example, the
user may be asked to identify in the grid the subset of
CAPTCHAs which embed English words (assuming some,
but not all, do). One advantage of this approach is that
it relies on existing security assumptions about text-based
CAPTCHAs that have been in use for a long time and have
been the object of intense scrutiny.

5. CONCLUSION
We describe a classifier which is 82.7% accurate in telling

apart the images of cats and dogs used in Asirra. This clas-
sifier allows us to solve a 12-image Asirra challenge with
probability 10.3%. The weakness we have exposed in the



current implementation of Asirra cautions against deploy-
ing Asirra without additional safeguards. With appropriate
safeguards, notably the token bucket scheme described in [7],
we believe that Asirra continues to offer an appealing bal-
ance between security and usability. We hope that this work
will contribute to the secure deployment of Asirra.
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